Densities, Refractive Indices, and Excess Molar Volumes of Water + Ethanol + 2-Methoxy-2-methylpropane at 298.15 K

Alberto Arce,* Antonio Blanco, José Mendoza, and Ana Soto
Department of Chemical Engineering, University of Santiago de Compostela, E-15706 Santiago, Spain

Abstract

The refractive indices and densities of mixtures of water + ethanol + 2-methoxy-2-methylpropane and ethanol +2 -methoxy-2-methylpropane were determined at 298.15 K . Derived excess molar properties were correlated with the corresponding composition data using the polynomials of Redlich and Kister, Cibulka, and Singh et al.

Introduction

As part of our study of aqueous mixtures of alcohols and gasoline additives (Arce et al., 1994, 1995), in this work we examine the systems ethanol + 2-methoxy-2-methylpropane (methyl tert-butyl ether or MTBE) and water + ethanol +2 -methoxy-2-methylpropane. For totally miscible mixtures, the excess molar volumes V^{E} and the molar refractions R were, respectively, calculated from the densities d and refractive indices n_{D} at 298.15 K , in the latter case employing the Lorentz-Lorenz equation. The $V^{\mathbb{E}}$ data and ΔR-the deviation of R from a mole fraction average of the molar refractions of the pure components-were then correlated with the composition data by means of the polynomials of Redlich-Kister (1948), Cibulka (1982), and Singh et al. (1984).

Experimental Section

Materials. Water was purified using a Milli-Q Plus system. Ethanol was supplied by Merck and had a nominal purity >99.5 mass $\%$. 2-Methoxyl-2-methylpropane was supplied by Aldrich and was redistilled prior to use, its final purity being >99.7 mass $\%$. Water contents in the ethanol and in the MTBE were 0.08 and 0.03 mass \%, respectively (determined with a Metrohm 737 KF coulometer).
Apparatus and Procedure. The mixtures were prepared by mass using a Mettler AE 240 balance that measured to within $\pm 0.00001 \mathrm{~g}$. Densities were measured to within $\pm 0.00003 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ in an Anton Paar DMA 60/602 densimeter (calibrated with air and water) and refractive indices to within ± 0.0001 with an ATAGO RX-1000 refractometer. In both cases, a Hetotherm thermostat was used to maintain the temperature at $(298.15 \pm 0.02) \mathrm{K}$.
Table 1 lists the densities and refractive indices measured for the pure components, together with published values for these parameters (Riddick et al., 1986; Obama et al., 1985; Mato et al., 1991).

Results

The measured values of ρ and n_{D} for the ternary system water + ethanol + MTBE, and the V^{E} and ΔR values

Table 1. Densities ρ and Refractive Indices n_{D} of the Pure Components at 298.15 K

	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$			n_{D}	
component	exptl	lit		exptl	lit
water	0.99704	0.99704^{a}		1.3324	1.33250^{a}
ethanol	0.78520	$0.7850^{a} 4^{a}$		1.3592	1.35941^{a}
MTBE	0.73558	0.7351^{b}		1.3663	1.3663^{b}
		0.7356^{c}			

[^0]

Figure 1. Density isolines for water + ethanol + MTBE at 298.15 K and atmospheric pressure.

Figure 2. Refractive index isolines for water + ethanol + MTBE at 298.15 K and atmospheric pressure.
derived from them, are given in Table 2, which also includes these data for the binary system ethanol + MTBE. Figures 1 and 2 respectively, show the density and refractive index isolines for the ternary system. Figure 3 shows the dependence of V^{E} on the mole fractions of water and ethanol and Figure 4 the corresponding $V^{\mathbb{E}}$ isolines.
For the binary system, the V^{E} and ΔR data were correlated with the composition data using the Redlich-

Table 2. Densities ρ, Refractive Indices n_{D}, Excess Volumes V^{E}, and ΔR Values for Water (1) + Ethanol (2) + MTBE (3) at 298.15 K

x_{1}	x_{2}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	$n_{\text {D }}$	$\begin{gathered} V^{\mathrm{E}} /\left(\mathrm{cm}^{3} .\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$\underset{\left.\mathrm{mol}^{-1}\right)}{\Delta R /\left(\mathrm{cm}^{3}\right.}$
0.0000	0.0414	0.73724	1.3664	-0.100	-0.004
0.0000	0.1057	0.73980	1.3666	-0.230	-0.010
0.0000	0.1532	0.74168	1.3666	-0.308	-0.014
0.0000	0.2005	0.74357	1.3667	-0.371	-0.016
0.0000	0.2550	0.74577	1.3666	-0.429	-0.019
0.0000	0.3593	0.75009	1.3665	-0.499	-0.021
0.0000	0.4082	0.75220	1.3663	-0.516	-0.021
0.0000	0.4475	0.75393	1.3662	-0.522	-0.021
0.0000	0.4560	0.75431	1.3661	-0.523	-0.021
0.0000	0.5057	0.75658	1.3659	-0.522	-0.020
0.0000	0.5516	0.75875	1.3656	-0.513	-0.019
0.0000	0.5936	0.76081	1.3654	-0.499	-0.018
0.0000	0.6522	0.76380	1.3649	-0.468	-0.016
0.0000	0.6972	0.76620	1.3645	-0.436	-0.015
0.0000	0.7502	0.76916	1.3639	-0.389	-0.012
0.0000	0.7943	0.77173	1.3633	-0.342	-0.010
0.0000	0.8460	0.77488	1.3625	-0.275	-0.008
0.0000	0.8848	0.77735	1.3619	-0.218	-0.006
0.0000	0.9471	0.78150	1.3606	-0.109	-0.003
0.0078	0.0693	0.73888	1.3665	-0.188	-0.008
0.0216	0.1915	0.74504	1.3668	-0.454	-0.020
0.0327	0.2901	0.75040	1.3669	-0.612	-0.027
0.0410	0.3645	0.75474	1.3669	-0.697	-0.030
0.0527	0.4679	0.76127	1.3667	-0.768	-0.033
0.0565	0.5019	0.76356	1.3665	-0.779	-0.033
0.0635	0.5640	0.76797	1.3662	-0.782	-0.033
0.0727	0.6453	0.77421	1.3655	-0.753	-0.031
0.0813	0.7221	0.78068	1.3646	-0.688	-0.027
0.0905	0.8041	0.78833	1.3632	-0.575	-0.022
0.1012	0.8988	0.79831	1.3608	-0.385	-0.014
0.0208	0.0868	0.74054	1.3667	-0.280	-0.013
0.0388	0.1617	0.74513	1.3669	-0.481	-0.022
0.0594	0.2478	0.75084	1.3671	-0.671	-0.029
0.0774	0.3227	0.75628	1.3672	-0.800	-0.034
0.0974	0.4059	0.76296	1.3671	-0.903	-0.038
0.1073	0.4472	0.76656	1.3670	-0.938	-0.038
0.1160	0.4833	0.76990	1.3669	-0.960	-0.039
0.1345	0.5604	0.77763	1.3664	-0.973	-0.037
0.1544	0.6433	0.78709	1.3656	-0.935	-0.034
0.1728	0.7201	0.79714	1.3642	-0.844	-0.029
0.1935	0.8065	0.81035	1.3618	-0.665	-0.021
0.0329	0.0745	0.74121	1.3669	-0.350	-0.009
0.0660	0.1494	0.74723	1.3674	-0.626	-0.015
0.0871	0.1970	0.75133	1.3677	-0.769	-0.018
0.1317	0.2979	0.76100	1.3680	-0.999	-0.022
0.1587	0.3590	0.76771	1.3680	-1.094	-0.023
0.1772	0.4010	0.77280	1.3679	-1.140	-0.023
0.1901	0.4302	0.77659	1.3678	-1.162	-0.024
0.2158	0.4883	0.78492	1.3674	-1.181	-0.024
0.2437	0.5514	0.79531	1.3666	-1.157	-0.024
0.2739	0.6197	0.80860	1.3649	-1.070	-0.025
0.3065	0.6935	0.82607	1.3618	-0.889	-0.027
0.0386	0.0595	0.74101	1.3669	-0.347	-0.016
0.0813	0.1254	0.74740	1.3674	-0.649	-0.027
0.1201	0.1852	0.75376	1.3678	-0.866	-0.033
0.1698	0.2619	0.76306	1.3681	-1.082	-0.040
0.2069	0.3192	0.77115	1.3682	-1.202	-0.044
0.2233	0.3445	0.77509	1.3682	-1.243	-0.045
0.2396	0.3696	0.77929	1.3682	-1.275	-0.047
0.2814	0.4340	0.79149	1.3678	-1.317	-0.049
0.3126	0.4822	0.80224	1.3672	-1.302	-0.048
0.3517	0.5425	0.81820	1.3658	-1.209	-0.043
0.3933	0.6067	0.83924	1.3629	-0.993	-0.029
0.0518	0.0506	0.74184	1.3670	-0.412	-0.018
0.0966	0.0943	0.74756	1.3675	-0.692	-0.031
0.1467	0.1433	0.75453	1.3680	-0.941	-0.043
0.1928	0.1883	0.76169	1.3683	-1.122	-0.050
0.2562	0.2503	0.77322	1.3685	-1.308	-0.056
0.2786	0.2721	0.77788	1.3686	-1.356	-0.057
0.3120	0.3047	0.78557	1.3686	-1.410	-0.057
0.3569	0.3486	0.79759	1.3684	-1.443	-0.055
0.4016	0.3922	0.81194	1.3678	-1.423	-0.051
0.4512	0.4407	0.83174	1.3664	-1.318	-0.043
0.5059	0.4941	0.86034	1.3628	-1.073	-0.030
0.5942	0.4058	0.87895	1.3620	-1.097	-0.029
0.5317	0.3632	0.84415	1.3659	-1.368	-0.050
0.4910	0.3354	0.82686	1.3673	-1.462	-0.057
0.4543	0.3103	0.81365	1.3680	-1.493	-0.060
0.4197	0.2867	0.80336	1.3686	-1.520	-0.060
0.3954	0.2701	0.79665	1.3687	-1.503	-0.059
0.7447	0.2553	0.91740	1.3585	-0.992	-0.025
0.7135	0.2446	0.89456	1.3615	-1.171	-0.043
0.6795	0.2329	0.87375	1.3637	-1.314	-0.057
0.6559	0.2248	0.86086	1.3647	-1.367	-0.063

Figure 3. Composition dependence of the excess molar volume of water + ethanol + MTBE at 298.15 K and atmospheric pressure.

Figure 4. Excess molar volume isolines for water + ethanol + MTBE at 298.15 K and atmospheric pressure.

Table 3. Coefficients and Standard Deviations (σ) for the Excess Volume-Composition and ΔR-Composition Curves Fitted to the Data for the Ethanol (1) + MTBE (2) System

property	$A_{0} /\left(\mathrm{cm}^{3}\right.$. $\left.\mathrm{mol}^{-1}\right)$	$A_{1} /\left(\mathrm{cm}^{3 .}\right.$ $\left.\mathrm{mol}^{-1}\right)$	$A_{2} /\left(\mathrm{cm}^{3 .}\right.$ $\left.\mathrm{mol}^{-1}\right)$	$\sigma /\left(\mathrm{cm}^{3 .}\right.$ $\left.\mathrm{mol}^{-1}\right)$
V^{E}	-2.0902	0.1855	-0.3160	0.001
ΔR	-0.0820	0.0336		0.001

Kister polynomial (Redlich and Kister, 1948)

$$
\begin{equation*}
Q_{12}=x_{1}\left(1-x_{1}\right) \sum_{k=0}^{N} A_{k}\left(2 x_{1}-1\right)^{k} k=0,1,2, \ldots, N \tag{1}
\end{equation*}
$$

where Q_{12} is either V^{E} or $\Delta R, x_{1}$ is the mole fraction of the first component, and N corresponds to the number of polynomial coefficients.

For the ternary system, the above properties were correlated using the polynomials of Redlich and Kister (1948)

$$
\begin{align*}
& Q_{123}=Q_{12}+Q_{23}+Q_{31}+x_{1} x_{2} x_{3}\left(A+B\left(x_{1}-x_{2}\right)+\right. \\
& \left.C\left(x_{2}-x_{3}\right)+D\left(x_{3}-x_{1}\right)+E\left(x_{1}-x_{2}\right)^{2}+\ldots\right) \tag{2}
\end{align*}
$$

Cibulka (1982)

$$
\begin{equation*}
Q_{123}=Q_{12}+Q_{23}+Q_{31}+x_{1} x_{2} x_{3}\left(A+B x_{1}+C x_{2}\right) \tag{3}
\end{equation*}
$$

and Singh et al. (1984)

$$
\begin{array}{r}
Q_{123}=Q_{12}+Q_{23}+Q_{31}+x_{1} x_{2} x_{3}\left(A+B x_{1}\left(x_{2}-x_{3}\right)+\right. \\
\left.C x_{1}^{2}\left(x_{2}-x_{3}\right)^{2}\right) \tag{4}
\end{array}
$$

all of which include terms $Q_{i j}$ for each binary system involved (the term Q_{31} is considered to be zero here, since

Table 4. Coefficients and Standard Deviations (σ) for the Excess Volume-Composition and $\boldsymbol{A R}$-Composition Surfaces Fitted to the Data for the Water + Ethanol + MTBE System

property	polynomial	$A /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$B /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$C /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$D /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$E /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$F /\left(\mathrm{cm}^{3} \cdot \mathrm{mal}^{-1}\right)$	$G /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	$\sigma /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$
$V^{\text {E }}$ 。	RedlichKister	-19.225	-19.217	17.028	2.189	-20.809	-28.472	-1.927	0.03
	Cibulka	-34.916	-0.039	41.525					0.05
	Singh et al.	-18.703	85.640	-609.77					0.07
ΔR	RedlichKister	-0.946	-1.095	0.648	0.447				0.006
	Cibulka	-1.148	-1.340	1.945					0.006
	Singh et al.	-0.810	1.171						0.008

it corresponds to the immiscible binary subsystem water + MTBE). These equations were fitted to the corresponding excess molar property-composition data by leastsquares regression, applying Fischer's F-test to compare fits and thus minimize the number of coefficients, except in the case of the Cibulka polynomial. The coefficients and their mean standard deviations (σ) in $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$ for both excess properties have already been published for the water + ethanol system (Arce et al., 1993) and are listed in Table 3 for the binary ethanol + MTBE system and in Table 4 for the ternary water + ethanol + MTBE system.

Conclusions

For the miscible ternary mixtures water + ethanol + MTBE at 298.15 K and atmospheric pressure, excess molar volumes were negative and quite large, reaching ca. -1.52 $\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}$. The V^{E}-composition values were best correlated using the Redlich-Kister polynomial, although it required a greater number of coefficients than the polynomials of Cibulka and Singh et al.

The deviations of R from the mole fraction average of the molar refractions of the pure components were also negative, but had smaller values which did not exceed ca. $-0.06 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. The mean standard deviations (σ) were similar for the three polynomials: it is noteworthy that the very slightly higher value of σ obtained for the polynomial of Singh et al. was not improved by the inclusion of the second-order term and that, of the other two correlations, the Cibulka polynomial required the fewest coefficients.

Literature Cited

Arce, A.; Blanco, A.; Blanco, M.; Soto, A.; Vidal, I. Liquid-Liquid Equilibria of Water + Methanol + (MTBE or TAME) Mixtures. Can. J. Chem. Eng. 1994, 72, 935-938

Arce, A.; Blanco, A.; Soto A.; Souza, P.; Vidal, I. Excess volumes and refractions and liquid-liquid equilibria of the ternary system water + ethanol + hexyl acetate. Fluid Phase Equilib. 1993, 87, 347364.

Arce, A.; Martinez-Ageitos, J.; Mendoza, J.; Soto, A. Densities, Refractive Indices, and Excess Molar Volumes of Water + Methanol + 2-Methoxy-2-methylpropane at 298.15 K. J. Chem. Eng. Data 1995, 40, 647-649.
Cibulka, I. Estimation of Excess Volume and Density of Ternary Liquid Mixtures of Non-Electrolytes from Binary Data. Collect. Czech. Chem. Commun. 1982, 47, 1414-1419.
Mato, F. A.; Berro, C.; Péneloux, A. Excess Gibbs Energies and Excess Volumes of Methyl tert-Butyl Ether (MTBE) - Dichloromethane, + Chloroform, or + Tetrachloromethane. J. Chem. Eng. Data 1991, 36, 259-262.
Obama, M.; Oodera, Y.; Kohama, N.; Yanase, T.; Saito, Y.; Kusano, K. Densities, Molar Volumes, and Cubic Expansion Coefficients of 78 Aliphatic Ethers. J. Chem. Eng. Data 1985, 30, 1-5.
Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and The Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345-348.
Riddick, J. A.; Bunger, W. B.; Sakano, T. Organic Solvents, 4th ed.; John Wiley: New York, 1986.
Singh, P. P.; Nigam, R. K; Sharma, S. P.; Aggarwal, S. Molar Excess Volumes of Ternary Mixtures of Nonelectrolytes. Fluid Phase Equilib. 1984, 18, 333-344.

Received for review June 26, 1995. Accepted August 25, 1995. ${ }^{*}$ This work was partly supported by the DGICYT (Spain) under Project PB94-0658.
JE950147J
${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 1, 1995.

[^0]: ${ }^{a}$ Riddick et al. (1986). ${ }^{\text {b }}$ Obama et al. (1985). ${ }^{c}$ Mato et al. (1991).

